
Transfer of Fully Convolutional Policy-Value Networks
Between Games and Game Variants

Dennis J. N. J. Soemers * 1 Vegard Mella 2 Éric Piette 1 Matthew Stephenson 1 Cameron Browne 1

Olivier Teytaud 2

Abstract
In this paper, we use fully convolutional architec-
tures in AlphaZero-like self-play training setups
to facilitate transfer between variants of board
games as well as distinct games. We explore how
to transfer trained parameters of these architec-
tures based on shared semantics of channels in
the state and action representations of the Ludii
general game system. We use Ludii’s large library
of games and game variants for extensive trans-
fer learning evaluations, in zero-shot transfer ex-
periments as well as experiments with additional
fine-tuning time.

1. Introduction
AlphaGo (Silver et al., 2016) and its successors (Silver
et al., 2017; 2018) have inspired a significant amount of
research (Anthony et al., 2017; Tian et al., 2019; Morandin
et al., 2019; Wu, 2019; Cazenave et al., 2020; Cazenave,
2020) on combinations of self-play, Monte-Carlo Tree
Search (MCTS) (Kocsis & Szepesvári, 2006; Coulom, 2007;
Browne et al., 2012) and Deep Learning (LeCun et al., 2015)
for automated game-playing. Originally, AlphaGo used
distinct value and policy networks, each of which have
convolutional layers (LeCun et al., 1989) followed by fully-
connected layers. Silver et al. (2017) demonstrated that the
use of residual blocks (He et al., 2016), alongside merging
the policy and value networks into a single network with
two output heads, significantly improved playing strength
in AlphaGo Zero. Other modifications to neural network ar-
chitectures were also explored in subsequent research (Wu,
2019; Cazenave, 2020).

In the majority of prior research, spatial structures present in
the state-based inputs for board games are exploited by the

*Work done during an internship at Facebook AI Research.
1Department of Data Science and Knowledge Engineering, Maas-
tricht University, Maastricht, the Netherlands 2Facebook AI Re-
search, Paris, France. Correspondence to: Dennis Soemers <den-
nis.soemers@maastrichtuniversity.nl>.

Copyright 2021 by the author(s).

inductive bias of convolutional layers, but the policy head –
which has one output for every distinct possible move in a
board game – is preceded by one or more fully-connected
layers which do not leverage any spatial semantics. Vari-
ous architectures that also account for spatial semantics in
outputs have been proposed in computer vision literature
(Ronneberger et al., 2015; Shelhamer et al., 2017), and in
the context of games can also handle changes in board size
(Lin et al., 2014; Wu, 2019; Cazenave et al., 2020).

The primary contribution of this paper is an approach for
transfer learning between variants of games, as well as dis-
tinct games. We use fully convolutional networks with
global pooling from the Polygames framework (Cazenave
et al., 2020) for their ability to handle changes in spa-
tial dimensions during transfer. We focus on transfer be-
tween games implemented in the Ludii general game system
(Browne et al., 2020; Piette et al., 2020). Its consistent state
and action representations (Piette et al., 2021) and game-
independent manner of constructing tensor representations
for states and actions (Soemers et al., 2021) enables the
identification of shared semantics between the non-spatial
dimensions (channels) of inputs and outputs for different
(variants of) games. This facilitates transfer of trained pa-
rameters of fully convolutional networks. Despite previous
publications of benchmarks (Nichol et al., 2018), transfer
learning in games has remained a challenging problem with
limited successes. We propose that Ludii’s large library of
board games can be used as a new benchmark for transfer
learning in games, and provide extensive baseline results
that include various cases of successful zero-shot transfer
and transfer with fine-tuning, for transfer between variants
of board games as well as distinct board games. Our experi-
ments include transfer between domains with differences in
board sizes, board shapes, victory conditions, piece types,
and other aspects – many of these have been recognised as
important challenges for learning in games (Marcus, 2018).

2. Background
This section first provides background information on the
implementation of AlphaZero-like (Silver et al., 2018) self-
play training processes for games in Polygames (Cazenave

ar
X

iv
:2

10
2.

12
37

5v
1

 [
cs

.L
G

]
 2

4
Fe

b
20

21

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

et al., 2020), and the architectures of neural networks used
for this purpose. Secondly, we briefly describe tensor repre-
sentations in the Ludii general game system (Browne et al.,
2020; Piette et al., 2020; Soemers et al., 2021), which we
use for all transfer learning experiments. Finally, we discuss
background information on transfer learning in games.

2.1. Learning to Play Games in Polygames

Similar to AlphaZero (Silver et al., 2018), game-playing
agents in Polygames (Cazenave et al., 2020) use a com-
bination of MCTS and deep neural networks (DNNs).
Experience for training is generated in the form of self-
play games between MCTS agents that are guided by the
DNN. Given a tensor representation of an input state s,
the DNN outputs a value estimate V (s) of the value of
that state, as well as a discrete probability distribution
P(s) = [P (s, a1), P (s, a2), . . . , P (s, an)] over an action
space of n distinct actions. Both of these outputs are used
to guide the MCTS-based tree search. The outcomes (typ-
ically losses, draws, or wins) of self-play games are used
as training targets for the value head (which produces V (s)
outputs), and the distribution of visit counts to children of
the root node by the tree search process is used as a training
target for the policy head (which produces P(s) outputs).

For board games, input states s are customarily represented
as three-dimensional tensors of shape (C,H,W), where C
denotes a number of channels, H denotes the height of a
2D playable area (e.g., a game board), and W denotes the
width. The latter two are interpreted as spatial dimensions
by convolutional neural networks. It is typically assumed
that the complete action space can be feasibly enumerated in
advance, which means that the shape of P(s) output tensors
can be constructed such that every possibly distinct action a
has a unique, matching scalar P (s, a) for any possible state
s in the policy head. A DNN first produces logits L(s, a) for
all actions a, which are transformed into probabilities using
a softmax after masking out any actions that are illegal in s.

In some general game systems, it can be difficult or impos-
sible to guarantee that there will never be multiple different
actions that share a single output in the policy head (Soe-
mers et al., 2021) without manually incorporating additional
game-specific domain knowledge. We say that distinct ac-
tions are aliased if they are represented by a single, shared
position in the policy head’s output tensor. In Polygames,
the MCTS visit counts of aliased actions are summed up to
produce a single shared training target for the corresponding
position in the policy head. In the denominator of the soft-
max, we only sum over the distinct logits that correspond to
legal actions (i.e., logits for aliased actions are not counted
more than once). All aliased actions a receive the same
prior probability P (s, a) to bias the tree search – because
the DNN cannot distinguish between them – but the tree

search itself can still distinguish between them.

2.2. The Ludii General Game System

Ludii (Browne et al., 2020; Piette et al., 2020) is a gen-
eral game system with over 500 built-in games, many of
which support multiple variants with different board sizes,
board shapes, rulesets, etc. It automatically constructs suit-
able object-oriented state and action representations for any
game described in its game description language, and these
can be converted into tensor representations in a consistent
manner without the need for additional game-specific engi-
neering effort (Soemers et al., 2021). All games in Ludii are
modelled as having one or more “containers”, which can be
viewed as areas with spatial semantics (such as boards) that
contain relevant elements of game states and positions that
are affected by actions. This means that all games in Ludii
are compatible with fully convolutional architectures.

2.3. Transfer Learning in Games

AlphaZero-like training approaches have produced superhu-
man agents for a variety of board games (Silver et al., 2018;
Cazenave et al., 2020), and hence been shown to have fairly
general applicability, but models are generally trained from
scratch for every distinct game. Transfer learning (Taylor
& Stone, 2009; Lazaric, 2012; Zhu et al., 2020) may allow
for significant savings in computation costs by transferring
trained parameters from a source domain (i.e., a game that
we train on first) to one or more target domains (i.e., variants
of the source game or different games altogether).

To the best of our knowledge, research on transfer learning
between distinct games has been fairly limited. Kuhlmann
& Stone (2007) investigated the automated discovery of
certain types of relations between source and target games,
and transferred trained value functions in specific ways for
specific relations. Banerjee & Stone (2007) proposed to
transfer value functions based on game-independent features
of a game tree’s shape. Both approaches were evaluated,
and the former is also restricted to, games defined in the
Stanford Game Description Language (Love et al., 2008).

In this paper, we focus on transferring complete policy-
value networks – with policy as well as value heads – as
they are commonly used in modern game AI literature, using
the Ludii general game system to provide easy access to
a large and diverse number of games and game variants.
Crucially, the transfer of trained parameters for a network
with a policy head requires the ability to construct a mapping
between action spaces of source and target domains, which
we propose a method for. This is in contrast to approaches
that only transfer value functions, which also only require
the ability to create a mapping between state spaces.

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

Figure 1. Example of a fully convolutional architecture for game
playing. Input states s are provided as tensors of shape
(Cstate, H,W). All convolutions construct hidden representations
of shape (Chidden, H,W), where Chidden may differ from Cstate.
The policy output P(s) is a tensor of shape (Caction, H,W). The
value output V (s) is a scalar. Global pooling is used to reduce the
dimensionality for the V (s) output in a manner that can transfer
to different board sizes (Wu, 2019; Cazenave et al., 2020).

2.4. Fully Convolutional Architectures

Following Subsection 2.1, we assume that game states s are
represented as tensors of shape (Cstate, H,W), and that the
action space can be represented by a shape (Caction, H,W)
– we may think of actions as being represented by an action
channel, and coordinates in the 2D space of H rows and W
columns. A network’s policy head therefore also has a shape
of (Caction, H,W). We focus on 2-player zero-sum games,
which means that a single scalar suffices as output for the
value head. Note that different games may have different
numbers of channels and different values for H and W .

It is common to use architectures that first process input
states s using convolutional layers, but at the end use one
or more non-convolutional layers (such as fully-connected
layers) preceding the outputs (Anthony et al., 2017; Silver
et al., 2017; 2018). This leads to networks that cannot
handle changes in the spatial dimensions (i.e., changes in H
or W), and have no inductive biases that leverage any spatial
structure that may be present in the action representation.
Fully convolutional architectures with global pooling, such
as those implemented in Polygames (Cazenave et al., 2020),
can address both of those concerns. In particular the ability
to handle changes in spatial dimensions is crucial for transfer
between distinct games or game variants, which is why we
restrict our attention to them in the majority of this paper.

A simplified version of such an architecture is depicted
in Figure 1. Note that some details, such as the use of
ReLU activations (Nair & Hinton, 2010), batch normaliza-
tion (Ioffe & Szegedy, 2015), and residual connections (He
et al., 2016) have been omitted for brevity. Full source
code for Polygames (Cazenave et al., 2020), including its

architectures, is available online. 1

3. Transferring Parameters Between Games
The fully convolutional architectures as described in the
previous section allow for DNNs trained in a source task
S to be directly used in any target task T if it only has
different values for one or both of the spatial dimensions H
and W . However, it is also possible that different tasks have
different numbers of channels Cstate or Caction for state or
action representations (or the same number of channels, but
significantly different semantics for those channels). This
section describes how we identify channels – for actions as
well as states – that are likely to be semantically “equivalent”
for any pair of games in Ludii’s tensor representations (Soe-
mers et al., 2021), and how to transfer trained parameters
accordingly. We use a relatively simplistic, binary notion
of equivalence; a pair of a channel in S and a channel in
T will either be considered to have identical semantics, or
completely different semantics. Furthermore, we only con-
sider the raw data that is encoded by a channel, and do not
account for any differences in game rules in this notion of
equivalence. For example, the two channels that encode
presence of the two players’ pieces in many games such as
Hex, Go, Tic-Tac-Toe, etc., are considered to have identical
semantics. A link to all the source code for identifying these
mappings will be provided after double-blind peer review.

3.1. Mapping State Channels

For the majority of channels in Ludii’s state tensor repre-
sentations (Soemers et al., 2021), semantically equivalent
channels are straightforward to identify. For example, a
channel that encodes whether player p is the current player,
or whether a position was the destination of the previous
move in a source domain S , will always have a semantically
equivalent channel that encodes identical data and can easily
be identified as such in a target domain T . These cases are
listed in detail in Appendix A of the supplementary material.
The first non-trivial case is that of binary channels which
encode, for every pair of spatial coordinates, whether or
not the corresponding position exists in a container repre-
sented by that channel. For example, the game of Shogi in
Ludii has three separate containers; a large container for
the game board, and two smaller containers representing
player “hands”, which hold captured pieces. These different
containers are assigned different sections of the 2D space,
and every container has a binary channel that tells the DNN
which positions exist in which containers. In all the built-in
games available in Ludii, containers are ordered in a “se-
mantically consistent” manner; the first container is always
the main game board, always followed by player hands (if

1https://github.com/facebookincubator/
Polygames

https://github.com/facebookincubator/Polygames
https://github.com/facebookincubator/Polygames

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

there are any), etc. Therefore, we use the straightforward ap-
proach of mapping these container-based channels simply in
the order in which they appear. It may be possible to remove
the reliance on such domain knowledge with techniques that
automatically analyse the rules of a game in more detail
(Kuhlmann & Stone, 2007; Bou Ammar, 2013; Bou Ammar
et al., 2014), but is outside the scope of this work.

The second case that warrants additional explanation is that
of binary channels that encode the presence of pieces; for
every distinct piece type that is defined in a game, Ludii
creates a binary channel that indicates for every possible
position whether or not a piece of that type is placed in that
position. Many games (such as Hex, Go, Tic-Tac-Toe, etc.)
only have a single piece type per player, and for these we
could easily decide that a channel indicating presence of
pieces of Player p in one game is semantically equivalent to
a channel indicating presence of pieces of the same player in
another game. For cases with more than a single piece type
per player, we partially rely on an unenforced convention
that pieces in built-in games of Ludii tend to be named
consistently across closely-related games (e.g., similar piece
type names are used in many variants of Chess). If we
find an exact name match for piece types between S and
T , we treat the corresponding channels as semantically
equivalent. Otherwise, for any piece type j in T , we loop
over all piece types in S, and compute the Zhang-Shasha
tree edit distances (Zhang & Shasha, 1989) between the
trees of “ludemes” that describe the rules for the piece types
in Ludii’s game description language (Piette et al., 2020).

3.2. Transferring State Channel Parameters

For the purpose of determining how to transfer parameters
that were trained in S to a network that can play T , we
make the assumption that S and T are exactly the same
game, but with different state tensor representations; some
state channels may have been added, removed, or shuffled
around. We make this assumption because it enables us to
build a more rigorous notion of what it means to “correctly”
transfer parameters without accounting for differences in
rules, optimal strategies, or value functions. In practice, S
and T can end up being different games, and we intuitively
still expect this transfer to be potentially beneficial if the
games are sufficiently similar, but the notion of “correct”
transfer cannot otherwise be made concrete without detailed
domain knowledge of the specific games involved.

Let s denote the tensor representation, of shape
(CS

state, H,W), for any arbitrary state in S. Let s′ denote
the tensor representation, of shape (CT

state, H,W), for the
same state represented in T – this must exist by the assump-
tion that S and T are the same game, modelled in different
ways. Let hS

1 (s) denote the hidden representation obtained
by the application of the first convolutional operation on

s, in a network trained on S. For brevity we focus on the
case used throughout all our experiments, but most if not all
of these assumptions can likely be relaxed; a nn.Conv2d
layer as implemented in PyTorch (Paszke et al., 2019), with
3×3 filters, a stride and dilation of 1, and a padding of 1
(such that the spatial dimensions do not change). Let ΘS

denote this layer’s tensor of parameters trained in S, of
shape (kout, C

S
state, 3, 3), and BS – of shape (kout) – the

corresponding bias. This leads to hS
1 having a shape of

(kout, H,W). Similarly, let hT
1 (s′) denote the first hidden

representation in the network after transfer, for the match-
ing state s′ in the new target domain’s representation, with
weight and bias tensors ΘT and BT .

Under the assumption of source and target games being
identical, we could obtain correct transfer by ensuring that
hS
1 (s) = hT

1 (s′). Achieving this would mean that the first
convolutional layer would handle any changes in the state
representation, and the remainder of the network could be
transferred in its entirety and behave as it learned to do in
the source domain. BT is simply initialised by copying BS .
Let i ∼= j denote that the ith channel in a source domain
S has been determined (as described in Subsection 3.1) to
be semantically equivalent to the jth channel in a target
domain T . Channels on the left-hand side are always source
domain channels, and channels on the right-hand side are
always target domain channels. For any channel j in T , if
there exists a channel i in S such that i ∼= j, we initialise
ΘT (k, j, ·, ·) := ΘS(k, i, ·, ·) for all k. If there is no such
channel i, we initialise these parameters using the default
approach for initialising untrained parameters (or initialise
them to 0 for zero-shot evaluations, where these parameters
do not need to remain trainable through backpropagation).

If T contains channels j such that there are no equivalent
channels i in S, i.e. {i | i ∼= j} = ∅, we have no transfer
to the ΘT (k, j, ·, ·) parameters. This can be the case if T
involves new data for which there was no equivalent in the
representation of S, which means that there was also no
opportunity to learn about this data in S.

If S contained channels i such that there are no equivalent
channels j in T , i.e. @j (i ∼= j), we have no transfer from
the ΘS(k, i, ·, ·) parameters. This can be the case if S in-
volved data that is no longer relevant or accessible in T . Not
using them for transfer is equivalent to pretending that these
channels still are present, but always filled with 0 values.

If S contained a channel i such that there are multiple equiv-
alent channels j in T , i.e. |{j | i ∼= j}| > 1, we copy a
single set of parameters multiple times. This can be the case
if T uses multiple channels to encode data that was encoded
by just a single channel in S (possibly with a loss of infor-
mation). In the case of Ludii’s tensor representations, this
only happens when transferring channels representing the
presence of piece types from a game S with fewer types

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

of pieces, to a game T with more distinct piece types. In
the majority of games in Ludii, such channels are “mutually
exclusive” in the sense that if a position contains a 1 entry
in one of these channels, all other channels in the set are
guaranteed to have a 0 entry in the same position. This
means that copying the same parameters multiple times can
still be viewed as “correct”; for any given position in a state,
they are guaranteed to be multiplied by a non-zero value at
most once. The only exceptions are games T that allow for
multiple pieces of distinct types to be stacked on top of each
other in a single position, but these games are rare and not
included in any of the experiments described in this paper.

If T contains a single channel j such that there are multiple
equivalent channels i in S, i.e. |{i | i ∼= j}| > 1, there is
no clear way to correctly transfer parameters without incor-
porating additional domain knowledge on how the single
target channel summarises – likely with a loss of informa-
tion – multiple source channels. This case never occurs
when mapping channels as described in Subsection 3.1.

3.3. Mapping Action Channels

Channels in Ludii’s action tensor representations (Soemers
et al., 2021) have three broad categories of channels; a
channel for pass moves, a channel for swap moves, and one
or more channels for all other moves. Channels for pass or
swap moves in one domain can easily be classified as being
semantically equivalent only to channels for the same type
of moves in another domain.

We refer to games where, in Ludii’s internal move represen-
tation (Piette et al., 2021), some moves have separate “from”
and “to” (or source and destination) positions as movement
games (e.g. Amazons, Chess, Shogi, etc.), and games where
all moves only have a “to” position as placement games (e.g.
Go, Hex, Tic-Tac-Toe, etc.). In placement games, there is
only one more channel to encode all moves that are not pass
or swap moves. In movement games, there are 49 additional
channels, which can distinguish moves based on any dif-
ferences in x and y coordinates between “from” and “to”
positions in {≤ −3,−2,−1, 0, 1, 2,≥ 3}.
If both S and T are placement games, or if both are move-
ment games, we can trivially obtain one-to-one mappings
between all move channels. If S is a movement game, but
T is a placement game, we only treat the source channel
that encodes moves with equal “from” and “to” positions as
semantically equivalent (in practice, this channel remains
unused in the vast majority of movement games, which
means that we effectively get no meaningful transfer for
moves due to the large discrepancy in movement mecha-
nisms). If S is a placement game, and T is a movement
game, we treat the sole movement channel from S as being
semantically equivalent to all the movement channels in T .

3.4. Transferring Action Channel Parameters

Similar to Subsection 3.2, we make the assumption that
source and target games S and T are identical games, but
with different action tensor representations, such that we
can define a clear notion of correctness for transfer. Let s
and a denote any arbitrary state and action in S , such that a
is legal in s, and let s′ and a′ denote the corresponding rep-
resentations in T . We assume that the state representations
have been made equivalent through transfer of parameters
for the first convolutional layer, as described in Subsec-
tion 3.2. Let hn(s) be the hidden representation that, in a
fully convolutional architecture trained in S , is transformed
into a tensor L(hn(s))S of shape (CS

action, H,W) of logits.
Similarly, let L(hn(s′))T of shape (CT

action, H,W) denote
such a tensor of logits in the target domain. By assumption,
we have that hn(s) = hn(s′).

If the action representations in S and T are equally powerful
in their ability to distinguish actions, we can define a notion
of correct transfer of parameters by requiring the transfer
to ensure that L(hn(s))S = L(hn(s′))T after accounting
for any shuffling of channel indices. If we have one-to-one
mappings for all action channels, this can be easily achieved
by copying parameters of the final convolutional operation
in a similar way as for state channels (see Subsection 3.2).

If the action representation of T can distinguish actions
from each other that cannot be distinguished in S , we have
a reduction in move aliasing (see Subsection 2.1). This
happens when transferring from placement games to move-
ment games. Since these actions were treated as identical
when training in S, it is sensible to continue treating them
as identical and give them equal probabilities in T . This is
achieved by mapping a single source channel to multiple
target channels, and copying trained parameters accordingly.

If the action representation of S could distinguish actions
from each other that can no longer be distinguished in T .
This happens when transferring from movement games to
placement games. As described in the previous subsection,
we handle this case conservatively by only allowing transfer
from a single source channel – the one that is arguably the
“most similar” – and discarding all other parameters.

4. Experiments
This section discusses experiments used to evaluate the per-
formance of fully convolutional architectures, as well as
several transfer learning experiments between variants of
games and between distinct games. We used the training
code from Polygames (Cazenave et al., 2020). For transfer
learning experiments, we used games as implemented in
Ludii v1.1.6 (Browne et al., 2020). Appendix B of the sup-
plementary material provides details on hyperparameters.

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

105 106

Num. Parameters

0

20

40

60

80

100

W
in

P
er

ce
n

ta
g

e
Connect6

103 104 105

Num. Parameters

0

20

40

60

80

100

W
in

P
er

ce
n

ta
g

e

Havannah (5×5)

104 105 106

Num. Parameters

0

20

40

60

80

100

W
in

P
er

ce
n

ta
g

e

Havannah (8×8)

104 105

Num. Parameters

0

20

40

60

80

100

W
in

P
er

ce
n

ta
g

e

Havannah (10×10)

103 104 105

Num. Parameters

0

20

40

60

80

100

W
in

P
er

ce
n

ta
g

e

Hex (11×11)

103 104 105 106

Num. Parameters

0

20

40

60

80

100

W
in

P
er

ce
n

ta
g

e

Hex (13×13)

103 104 105

Num. Parameters

0

20

40

60

80

100

W
in

P
er

ce
n

ta
g

e

Hex (19×19)

107 108

Num. Parameters

0

20

40

60

80

100

W
in

P
er

ce
n

ta
g

e

Minishogi

ResConvConvLogitModel

ResConvConvLogitPoolModel

UConvConvLogitModel

NanoConvLogitModel

NanoFCLogitModel

ResConvFCLogitModel

UConvFCLogitModel

Figure 2. Win percentages of a trained MCTS with 40 iterations/move vs. UCT with 800 iterations/move for a variety of architectures.
Nano: shallow architectures. ConvConv: deep fully convolutional. ConvFC: fully connected layers after convolutional ones. Pool:
adding global pooling; U: adding U-connections (Ronneberger et al., 2015). Deep is better than shallow, U-nets are slightly better than
their classical counterparts, and deep nets are greatly improved by (i) using fully convolutional policy heads (ii) using global pooling.

4.1. Evaluation of Fully Convolutional Architectures

We selected a variety of board games as implemented in
Polygames (Cazenave et al., 2020), and trained networks
of various sizes and architectures, using 24 hours on 8
GPUs and 80 CPU cores per model. Models of various
sizes – measured by the number of trainable parameters
– have been constructed by randomly drawing choices for
hyperparameters such as the number of layers, blocks, and
channels for hidden layers. After training, we evaluated
the performance of every model by recording the win per-
centage of an MCTS agent using 40 iterations per move
with the model, versus a standard untrained UCT (Browne
et al., 2012) agent with 800 iterations per move. These
win percentages are depicted in Figure 2. In the major-
ity of cases, ResConvConvLogitPoolModel – a fully
convolutional model with global pooling – is among the
strongest architectures. Fully convolutional models gener-
ally outperform ones with dense layers, and models with
global pooling generally outperform those without global
pooling. This suggests that using such architectures can be
beneficial in and of itself, and their use to facilitate transfer
learning does not lead to a sacrifice in baseline performance.

4.2. Evaluation of Transfer Learning

All transfer learning experiments discussed below used the
ResConvConvLogitPoolModelV2 architecture from
Polygames (Cazenave et al., 2020). All models were trained

for 20 hours on 8 GPUs and 80 CPU cores, using 1 server for
training and 7 clients for the generation of self-play games.

4.2.1. TRANSFER BETWEEN GAME VARIANTS

We selected a set of nine different board games, as im-
plemented in Ludii, and for each of them consider a few
different variants. The smallest number of variants for a sin-
gle game is 2, and the largest number of variants for a single
game is 6. In most cases, the different variants are simply
different board sizes. For example, we consider Gomoku
played on 9×9, 13×13, 15×15, and 19×19 boards as four
different variants of Gomoku. We also include some cases
where board shapes change (i.e., Breakthrough played on
square boards as well as hexagonal boards), “small” changes
in rules (i.e., Broken Line played with a goal line length of
3, 4, 5, or 6), and “large” changes in rules (i.e., Hex with the
standard win condition and Misère Hex with an inverted win
condition). Details on all the games and game variants used
are provided in Appendix C of the supplementary material.

We trained a separate model for every variant of each of
these games, and within each game, transferred models
from all variants to all other variants. We evaluate zero-
shot transfer performance for a source domain S and target
domain T by reporting the win percentage of the model
trained in S against the model that was trained in T , over
300 evaluation games per (S, T) tuple running in T .

Figure 3 and Figure 4 depict scatterplots of all these zero-

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

0.2 0.4 0.6 0.8 1.0

(Num epochs S)÷ (Num epochs T)

0

20

40

60

80

100

Z
er

o-
sh

ot
T

ra
ns

fe
r

W
in

%

Figure 3. Zero-shot transfer from S with larger board sizes to T
with smaller board sizes, for several board games and board sizes.

1 2 3 4 5 6 7

(Num epochs S)÷ (Num epochs T)

0

20

40

60

80

100

Z
er

o-
sh

ot
T

ra
ns

fe
r

W
in

%

Figure 4. Zero-shot transfer from S with smaller board sizes to T
with larger board sizes, for several board games and board sizes.

shot transfer evaluations for the cases where S has a larger
board size than T , and where S has a smaller board size
than T , respectively. The y-axis represents win percentages
of the transferred model against the baseline model, and the
x-axis represents the ratio of the number of training epochs
of the source model to the number of training epochs of the
target model. Models trained on larger board sizes tend to
have a lower number of training epochs for three reasons;
the neural network passes are more expensive, the game
logic in Ludii is more expensive, and episodes often tend
to last for a higher number of turns when played on larger
boards. Hence, all data points in Figure 3 have a ratio≤ 1.0,
and all data points in Figure 4 have a ratio ≥ 1.0.

When transferring a model that was trained on a large board
to a small board (Figure 3), zero-shot win percentages tend
to be below 50%, but frequently still above 0%. This sug-
gests that training on a larger board than the one we intend to
play on does not outperform simply training on the correct
board directly, but it often still produces a capable model
that can win a non-trivial number of games. When transfer-
ring a model that was trained on a small board to a large
board (Figure 4), we also frequently obtain win percentages
above 50%, even reaching up to 100%, against models that
were trained directly on the board used for evaluation.

Zero-shot transfer between variants with larger differences,
such as modified board shapes or changes in win conditions,
only leads to win percentages significantly above 0% in a

few cases. These results, as well as more detailed tables, are
presented in Appendix D of the supplementary material.

For every model transferred from a source domain S to a
target domain T as described above, we train it under identi-
cal conditions as the initial training runs – for an additional
20 hours – to evaluate the effect of using transfer for initiali-
sation of the network. Figure 5 depicts scatterplots of win
percentages for four distinct cases; transfer to variants with
smaller board sizes, with larger board sizes, with different
board shapes, and with different win conditions. There are
many cases of win percentages close to 50%, which can
be interpreted as cases where transfer neither helped nor
hurt final performance, and many cases with higher win per-
centages – which can be interpreted as cases where transfer
increased final performance in comparison to training from
scratch. We observe a small number of cases, especially
when S has a larger board than T , or has different win condi-
tions, in which there is clear negative transfer (Zhang et al.,
2020) and the final performance is still closer to 0% even
after fine-tuning on T . More detailed results are provided
in Appendix E of the supplementary material.

4.2.2. TRANSFER BETWEEN DIFFERENT GAMES

For our final set of experiments, we collected four sets of
games, and within each set carried out similar experiments
as described above – this time transferring models between
distinct games, rather than game variants. The first set
consists of six different Line Completion Games; in each
of these games the win condition is to create a line of n
pieces, but the games differ in aspects such as the value of n,
board sizes and shapes, move rules, loss conditions, etc. We
evaluate transfer from each of those games, to each of these
games. The second set consists of four Shogi Variants: we
include Hasami Shogi, Kyoto Shogi, Minishogi, and Shogi,
and evaluate transfer from and to each of them. In the third
set we evaluate transfer from each of four variants of Broken
Line, to each of the six line completion games. Broken Line
is a custom-made line completion game where only diagonal
lines count towards the win condition, whereas the standard
line completion games allow for orthogonal lines. In the
fourth set, we evaluate transfer from each of five variants of
Diagonal Hex, to each of six variants of Hex. Diagonal Hex
only considers diagonal connections for the win condition
of Hex, whereas the Hex variants only consider orthogonal
connections. Appendix C of the supplementary material
provides more details on all the games and variants.

In most cases, zero-shot win percentages for models trans-
ferred between distinct games are close to 0%. We ob-
serve some success with zero-shot win percentages greater
than 30% for transfer from several different line completion
games to Connect 6, zero-shot win percentages between
20% and 50% for transfer from three different Shogi vari-

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

0.2 0.4 0.6 0.8 1.0

(Num epochs S)÷ (Num epochs T)

0

20

40

60

80

100

F
in

et
un

ed
T

ra
ns

fe
r

W
in

%

(a) S with larger board sizes than T .

1 2 3 4 5 6 7

(Num epochs S)÷ (Num epochs T)

0

20

40

60

80

100

F
in

et
un

ed
T

ra
ns

fe
r

W
in

%

(b) S with smaller board sizes than T .

0.5 1.0 1.5 2.0 2.5

(Num epochs S)÷ (Num epochs T)

0

20

40

60

80

100

F
in

et
un

ed
T

ra
ns

fe
r

W
in

%

(c) Different board shapes for S and T .

0.5 1.0 1.5 2.0 2.5

(Num epochs S)÷ (Num epochs T)

0

20

40

60

80

100

F
in

et
un

ed
T

ra
ns

fe
r

W
in

%

(d) Different win conditions for S and T .

Figure 5. Win percentages of models trained on S and subsequently fine-tuned on T , against models trained only on T – evaluated on T .

0 2 4 6 8 10

(Num epochs S)÷ (Num epochs T)

0

20

40

60

80

100

T
ra

ns
fe

r
W

in
%

Game Sets

Line Completion Games

Shogi Variants

Broken Line → Line Completion Games

Diagonal Hex → Hex

Figure 6. Win percentages of models that were trained in S, trans-
ferred to T , and fine-tuned in T , evaluated in T against models
trained directly in T . S and T are different games.

ants to Hasami Shogi, as well as a win percentage of 97% for
zero-shot transfer from Minishogi to Shogi. Appendix F of
the supplementary material contains more detailed results.

Figure 6 depicts win percentages for transferred models af-
ter they received an additional 20 hours of fine-tuning time
on T . Most notably for various cases of transfer from Diag-
onal Hex to Hex, there is a high degree of negative transfer,
with many win percentages far below 50% even after fine-
tuning. It may be that the differences in connectivity rules
are too big to allow for consistently successful transfer. The
difficulties in transfer may also be due to large differences in
the distributions of outcomes, resulting in large mismatches
for the value head; ties are a common result in some vari-
ants of Diagonal Hex, but impossible in Hex. In particular
for line completion games, transfer appears to be generally

successful; there are no severe cases of negative transfer,
and a significant amount with strong positive transfer.

5. Conclusions
In this paper, we explored the ability to transfer fully con-
volutional networks with global pooling, trained using an
AlphaZero-like approach, between variants of board games,
and distinct board games. Firstly, we compared the per-
formance of such architectures to various others outside
of a transfer learning setting, and demonstrated them to
be among the top-performing architectures in a variety of
board games: fully convolutional nets bring a strong im-
provement in particular for large board games, and global
pooling and U-nets provide slight improvements (Fig. 1).
Secondly, we explored how to transfer parameters of such
networks between different games with different state and
action representations in the Ludii general game system. We
evaluated zero-shot transfer performance, as well as the per-
formance of transferred models after additional fine-tuning
in the target domain, for a wide variety of source and target
games and game variants in Ludii. We find several cases
where even zero-shot transfer is highly successful – espe-
cially when transferring from smaller games to larger ones.
We also observe a significant number of cases of beneficial
transfer after fine-tuning, even when the source and target
domains have more significant differences than just changes
in board size or shape (see Figure 6). Finally, we find some
cases with clear negative transfer, even after fine-tuning,
which point to avenues for future research.

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

Acknowledgements
The authors would like to thank Nicolas Usunier for com-
ments on an earlier version of this work. This work was
partially supported by the European Research Council as
part of the Digital Ludeme Project (ERC Consolidator Grant
#771292), led by Cameron Browne at Maastricht Univer-
sity’s Department of Data Science and Knowledge Engi-
neering.

References
Anthony, T., Tian, Z., and Barber, D. Thinking fast and

slow with deep learning and tree search. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems 30, pp. 5360–5370. Cur-
ran Associates, Inc., 2017.

Banerjee, B. and Stone, P. General game learning using
knowledge transfer. In The 20th International Joint Con-
ference on Artificial Intelligence, pp. 672–677, 2007.

Bou Ammar, H. Automated transfer in reinforcement learn-
ing. PhD thesis, Maastricht University, Maastricht, the
Netherlands, 2013.

Bou Ammar, H., Eaton, E., Taylor, M. E., Mocanu, D. C.,
Driessens, K., Weiss, G., and Tuyls, K. An automated
measure of mdp similarity for transfer in reinforcement
learning. In Proceedings of the Interactive Systems Work-
shop at the American Association of Artificial Intelligence
(AAAI), pp. 31–37, 2014.

Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowl-
ing, P. I., Rohlfshagen, P., Tavener, S., Perez, D., Samoth-
rakis, S., and Colton, S. A survey of Monte Carlo tree
search methods. IEEE Transactions on Computational
Intelligence and AI in Games, 4(1):1–49, 2012.

Browne, C., Stephenson, M., Piette, É., and Soemers, D. J.
N. J. A practical introduction to the ludii general game
system. In Cazenave, T., van den Herik, J., Saffidine,
A., and Wu, I.-C. (eds.), Advances in Computer Games.
ACG 2019, volume 12516 of Lecture Notes in Computer
Science (LNCS). Springer, Cham, 2020.

Cazenave, T. Mobile networks for computer go. IEEE
Transactions on Computational Intelligence and AI in
Games, 2020. To appear.

Cazenave, T., Chen, Y.-C., Chen, G., Chen, S.-Y., Chiu, X.-
D., Dehos, J., Elsa, M., Gong, Q., Hu, H., Khalidov, V., Li,
C.-L., Lin, H.-I., Lin, Y.-J., Martinet, X., Mella, V., Rapin,
J., Roziere, B., Synnaeve, G., Teytaud, F., Teytaud, O., Ye,
S.-C., Ye, Y.-J., Yen, S.-J., and Zagoruyko, S. Polygames:
Improved zero learning. ICGA Journal, 2020. To appear.

Coulom, R. Efficient selectivity and backup operators in
Monte-Carlo tree search. In van den Herik, H. J., Cian-
carini, P., and Donkers, H. H. L. M. (eds.), Computers
and Games, volume 4630 of LNCS, pp. 72–83. Springer
Berlin Heidelberg, 2007.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778. IEEE, 2016.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift. In Bach, F. and Blei, D. (eds.), Proceedings of the
32nd International Conference on Machine Learning, vol-
ume 37 of Proceedings of Machine Learning Research,
pp. 448–456, 2015.

Kocsis, L. and Szepesvári, C. Bandit based Monte-Carlo
planning. In Fürnkranz, J., Scheffer, T., and Spiliopoulou,
M. (eds.), Machine Learning: ECML 2006, volume 4212
of Lecture Notes in Computer Science (LNCS), pp. 282–
293. Springer, Berlin, Heidelberg, 2006.

Kuhlmann, G. and Stone, P. Graph-based domain mapping
for transfer learning in general games. In Kok, J., Ko-
ronacki, J., Mantaras, R., Matwin, S., Mladenič, D., and
Skowron, A. (eds.), Machine Learning: ECML 2007, vol-
ume 4071 of Lecture Notes in Computer Science (LNCS),
pp. 188–200. Springer, Berlin, Heidelberg, 2007.

Lazaric, A. Transfer in reinforcement learning: a frame-
work and a survey. In Wiering, M. and van Otterlo, M.
(eds.), Reinforcement Learning, volume 12 of Adapta-
tion, Learning, and Optimization, pp. 143–173. Springer,
Berlin, Heidelberg, 2012.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,
R. E., Hubbard, W., and Jackel, L. D. Backpropaga-
tion applied to handwritten zip code recognition. Neural
Computation, 1(4):541–551, 1989.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Na-
ture, 521(7553):436–444, 2015.

Lin, M., Chen, Q., and Yan, S. Network in network. CoRR,
abs/1312.4400, 2014. URL https://arxiv.org/
abs/1312.4400.

Love, N., Hinrichs, T., Haley, D., Schkufza, E., and Gene-
sereth, M. General game playing: Game description
language specification, 2008.

Marcus, G. Innateness, alphazero, and artificial intelligence.
CoRR, abs/1801.05667, 2018. URL https://arxiv.
org/abs/1801.05667.

https://arxiv.org/abs/1312.4400
https://arxiv.org/abs/1312.4400
https://arxiv.org/abs/1801.05667
https://arxiv.org/abs/1801.05667

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

Morandin, F., Amato, G., Gini, R., Metta, C., Parton, M.,
and Pascutto, G.-C. SAI: a sensible artificial intelligence
that plays Go. In Proceedings of the 2019 International
Joint Conference on Neural Networks (IJCNN). IEEE,
2019.

Nair, V. and Hinton, G. Rectified linear units improve
restricted boltzmann machines. In Fürnkranz, J. and
Joachims, T. (eds.), Proceedings of the 27th International
Conference on Machine Learning, pp. 807–814. Omni-
press, 2010.

Nichol, A., Pfau, V., Hesse, C., Klimov, O., and Schulman, J.
Gotta learn fast: A new benchmark for generalization in
rl. CoRR, 2018. URL https://arxiv.org/abs/
1804.03720.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Piette, É., Soemers, D. J. N. J., Stephenson, M., Sironi, C. F.,
Winands, M. H. M., and Browne, C. Ludii – the ludemic
general game system. In Giacomo, G. D., Catala, A.,
Dilkina, B., Milano, M., Barro, S., Bugarı́n, A., and Lang,
J. (eds.), Proceedings of the 24th European Conference
on Artificial Intelligence (ECAI 2020), volume 325 of
Frontiers in Artificial Intelligence and Applications, pp.
411–418. IOS Press, 2020.

Piette, É., Browne, C., and Soemers, D. J. N. J. Ludii
game logic guide. CoRR, abs/2101.02120, 2021. URL
https://arxiv.org/abs/2101.02120.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolu-
tional networks for biomedical image segmentation. In
Navab, N., Hornegger, J., Wells, W. M., and Frangi, A. F.
(eds.), Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2015, pp. 234–241, Cham, 2015.

Shelhamer, E., Long, J., and Darrell, T. Fully convolutional
networks for semantic segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 39(4):640–
651, 2017.

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L.,
van den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.,
Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis,

D. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484–489, 2016.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L.,
van den Driessche, G., Graepel, T., and Hassabis, D.
Mastering the game of Go without human knowledge.
Nature, 550:354–359, 2017.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., Lillicrap, T., Simonyan, K., and Hassabis, D. A
general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play. Science, 362
(6419):1140–1144, 2018.

Soemers, D. J. N. J., Mella, V., Browne, C., and Teytaud,
O. Deep learning for general game playing with ludii
and polygames. CoRR, 2021. URL https://arxiv.
org/abs/2101.09562.

Taylor, M. E. and Stone, P. Transfer learning for reinforce-
ment learning domains: A survey. In Mahadevan, S. (ed.),
Journal of Machine Learning Research, volume 10, pp.
1633–1685, 2009.

Tian, Y., Ma, J., Gong, Q., Sengupta, S., Chen, Z., Pinkerton,
J., and Zitnick, C. L. ELF OpenGo: An analysis and open
reimplementation of AlphaZero. In Proc. 36th Int. Conf.
Mach. Learn. (ICML), pp. 6244–6253, 2019.

Wu, D. J. Accelerating self-play learning in go. CoRR,
abs/1902.10565, 2019. URL http://arxiv.org/
abs/1902.10565.

Zhang, K. and Shasha, D. Simple fast algorithms for the
editing distance between trees and related problems. In
SIAM Journal on Computing, volume 18, pp. 1245–1262,
1989.

Zhang, W., Deng, L., Zhang, L., and Wu, D. Overcoming
negative transfer: A survey. CoRR, abs/2009.00909, 2020.
URL https://arxiv.org/abs/2009.00909.

Zhu, Z., Lin, K., and Zhou, J. Transfer learning
in deep reinforcement learning: A survey. CoRR,
abs/2009.07888, 2020. URL https://arxiv.org/
abs/2009.07888.

https://arxiv.org/abs/1804.03720
https://arxiv.org/abs/1804.03720
https://arxiv.org/abs/2101.02120
https://arxiv.org/abs/2101.09562
https://arxiv.org/abs/2101.09562
http://arxiv.org/abs/1902.10565
http://arxiv.org/abs/1902.10565
https://arxiv.org/abs/2009.00909
https://arxiv.org/abs/2009.07888
https://arxiv.org/abs/2009.07888

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

A. Directly Transferable Ludii State Channels
Most state channels in Ludii’s tensor representations (Soemers et al., 2021) are directly transferable between games, in the
sense that they encode semantically similar data for any game in which they are present, and can be modelled as channels
that always have only values of 0 in any game that they are not present in. These channels are briefly described here:

• A channel encoding the height of a stack of pieces for every position (only present in games that allow for pieces of
more than a single piece type to stack on the same position).

• A channel encoding the number of pieces per position (only present in games that allow multiple pieces of the same
type to form a pile on the same position).

• Channels encoding the (typically monetary) “amount” value per player.

• Binary channels encoding whether a given player is the current player to move.

• Channels encoding “local state” values per position (for instance used to memorise whether pieces moved to determine
the legality of castling in Chess).

• A channel encoding whether or not players have swapped roles.

• Channels encoding “from” and “to” positions of the last and second-to-last moves.

B. Details on Experimental Setup
For all training runs for transfer learning experiments, the following command-line arguments were supplied to the train
command of Polygames (Cazenave et al., 2020):

• --num_game 2: Affects the number of threads used to run games per self-play client process.

• --epoch_len 256: Number of training batches per epoch.

• --batchsize 128: Batch size for model training.

• --sync_period 32: Affects how often models are synced.

• --num_rollouts 400: Number of MCTS iterations per move during self-play training.

• --replay_capacity 100000: Capacity of replay buffer.

• --replay_warmup 9000: Minimum size of replay buffer before training starts.

• --model_name "ResConvConvLogitPoolModelV2": Type of architecture to use (a fully convolutional
architecture with global pooling).

• --bn: Use of batch normalization (Ioffe & Szegedy, 2015).

• --nnsize 2: A value of 2 means that hidden convolutional layers each have twice as many channels as the number
of channels for the state input tensors.

• --nb_layers_per_net 6: Number of convolutional layers per residual block.

• --nb_nets 10: Number of residual blocks.

• --tournament_mode=true: Use the tournament mode of Polygames to select checkpoints to play against in
self-play.

• --bsfinder_max_bs=800: Upper bound on number of neural network queries batched together during inference
(we used a lower value of 400 to reduce memory usage in Breakthrough, Hasami Shogi, Kyoto Shogi, Minishogi, Shogi,
and Tobi Shogi).

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

All evaluation games in transfer learning experiments were run using the following command-line arguments for the eval
command of Polygames:

• --num_actor_eval=1: Number of threads running simultaneously for a single MCTS search for the agent being
evaluated.

• --num_rollouts_eval=800: Number of MCTS iterations per move for the agent being evaluated.

• --num_actor_opponent=1: Number of threads running simultaneously for a single MCTS search for the baseline
agent.

• --num_rollouts_opponent=800: Number of MCTS iterations per move for the baseline agent.

Any parameters not listed were left at their defaults in the Polygames implementation.

C. Details on Games and Game Variants
This section provides additional details on all the games and variants of games used throughout all the experiments described
in the paper. A game with name GameName is selected in Polygames by providing --game_name="GameName"
as command-line argument. For games implemented in Ludii, non-default variants are loaded by providing
--game_options "X" "Y" "Z" as additional command-line arguments, where X, Y, and Z refer to one or more
option strings.

C.1. Polygames Games

For the evaluation of fully convolutional architectures, we used games as implemented directly in Polygames. Table 1 lists
the exact game names used. Note that all versions of Havannah and Hex included use of the pie rule (or swap rule).

Table 1. Game implementations from Polygames used for evaluation of fully convolutional architectures. The right column shows the
names used in command-line arguments.

Game Game Name Argument

Connect6 Connect6
Havannah (5×5) Havannah5pie
Havannah (8×8) Havannah8pie
Havannah (10×10) Havannah10pie
Hex (11×11) Hex11pie
Hex (13×13) Hex13pie
Hex (19×19) Hex19pie
Minishogi Minishogi

C.2. Ludii Game Variants

For the transfer learning experiments between variants of games, we used nine games – each with multiple variants –
as implemented in Ludii: Breakthrough, Broken Line, Diagonal Hex, Gomoku, Hex, HeXentafl, Konane, Pentalath, and
Yavalath. For each of these games, Tables 2-10 provide additional details. In each of these tables, the final column lists
the number of trainable parameters in the Deep Neural Network (DNN) that is constructed for each game variant, using
hyperparameters as described in Appendix B.

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

Table 2. Details on Breakthrough variants. This implementation of Breakthrough is loaded in Polygames using “LudiiBreakthrough.lud”
as game name. By default, Breakthrough is played on an 8×8 square board.

Variant Options Description Num. Params DNN

Square6 "Board Size/6x6" "Board/Square" 6×6 square board 188,296
Square8 "Board Size/8x8" "Board/Square" 8×8 square board 188,296
Square10 "Board Size/10x10" "Board/Square" 10×10 square board 188,296
Hexagon4 "Board Size/4x4" "Board/Hexagon" 4×4 hexagonal board 188,296
Hexagon6 "Board Size/6x6" "Board/Hexagon" 6×6 hexagonal board 188,296
Hexagon8 "Board Size/8x8" "Board/Hexagon" 8×8 hexagonal board 188,296

Table 3. Details on Broken Line variants. This implementation of Broken Line is loaded in Polygames using “LudiiBroken Line.lud” as
game name.

Variant Options Description Num. Params DNN

LineSize3Hex "Line Size/3"
"Board Size/5x5"
"Board/hex"

5×5 hexagonal board, lines of 3 win 222,464

LineSize4Hex "Line Size/4"
"Board Size/5x5"
"Board/hex"

5×5 hexagonal board, lines of 4 win 222,464

LineSize5Square "Line Size/5"
"Board Size/9x9"
"Board/Square"

9×9 square board, lines of 5 win 222,464

LineSize6Square "Line Size/6"
"Board Size/9x9"
"Board/Square"

9×9 square board, lines of 6 win 222,464

Table 4. Details on Diagonal Hex variants. This implementation of Diagonal Hex is loaded in Polygames using “LudiiDiagonal Hex.lud”
as game name.

Variant Options Description Num. Params DNN

7×7 "Board Size/7x7" 7×7 hexagonal board 222,464
9×9 "Board Size/9x9" 9×9 hexagonal board 222,464
11×11 "Board Size/11x11" 11×11 square board 222,464
13×13 "Board Size/13x13" 13×13 square board 222,464
19×19 "Board Size/19x19" 19×19 square board 222,464

Table 5. Details on Gomoku variants. This implementation of Gomoku is loaded in Polygames using “LudiiGomoku.lud” as game name.
By default, Gomoku is played on a 15×15 board.

Variant Options Description Num. Params DNN

9×9 "Board Size/9x9" 9×9 square board 180,472
13×13 "Board Size/13x13" 13×13 square board 180,472
15×15 "Board Size/15x15" 15×15 square board 180,472
19×19 "Board Size/19x19" 19×19 square board 180,472

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

Table 6. Details on Hex variants. This implementation of Hex is loaded in Polygames using “LudiiHex.lud” as game name. By default,
Hex is played on an 11×11 board.

Variant Options Description Num. Params DNN

7×7 "Board Size/7x7" 7×7 board, standard win condition 222,464
9×9 "Board Size/9x9" 9×9 board, standard win condition 222,464
11×11 "Board Size/11x11" 11×11 board, standard win condition 222,464
13×13 "Board Size/13x13" 13×13 board, standard win condition 222,464
19×19 "Board Size/19x19" 19×19 board, standard win condition 222,464
11×11 Misere "Board Size/11x11"

"End Rules/Misere"
11×11 board, inverted win condition 222,464

Table 7. Details on HeXentafl variants. This implementation of HeXentafl is loaded in Polygames using “LudiiHeXentafl.lud” as game
name. By default, HeXentafl is played on a 4×4 board.

Variant Options Description Num. Params DNN

4×4 "Board Size/4x4" 4×4 hexagonal board 231,152
5×5 "Board Size/5x5" 5×5 hexagonal board 231,152

Table 8. Details on Konane variants. This implementation of Konane is loaded in Polygames using “LudiiKonane.lud” as game name. By
default, Konane is played on an 8×8 board.

Variant Options Description Num. Params DNN

6×6 "Board Size/6x6" 6×6 square board 188,296
8×8 "Board Size/8x8" 8×8 square board 188,296
10×10 "Board Size/10x10" 10×10 square board 188,296
12×12 "Board Size/12x12" 12×12 square board 188,296

Table 9. Details on Pentalath variants. This implementation of Pentalath is loaded in Polygames using “LudiiPentalath.lud” as game name.
By default, Pentalath is played on half a hexagonal board.

Variant Options Description Num. Params DNN

HexHexBoard "Board/HexHexBoard" A full hexagonal board 180,472
HalfHexHexBoard "Board/HalfHexHexBoard" Half a hexagonal board 180,472

Table 10. Details on Yavalath variants. This implementation of Yavalath is loaded in Polygames using “LudiiYavalath.lud” as game name.
By default, Yavalath is played on a 5×5 board.

Variant Options Description Num. Params DNN

3×3 "Board Size/3x3" 3×3 hexagonal board 222,464
4×4 "Board Size/4x4" 4×4 hexagonal board 222,464
5×5 "Board Size/5x5" 5×5 hexagonal board 222,464
6×6 "Board Size/6x6" 6×6 hexagonal board 222,464
7×7 "Board Size/7x7" 7×7 hexagonal board 222,464
8×8 "Board Size/8x8" 8×8 hexagonal board 222,464

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

C.3. Ludii Line Completion Games

For the evaluation of transfer between different line completion games, we used six different line completion games:
Connect6, Dai Hasami Shogi, Gomoku, Pentalath, Squava, and Yavalath. Several properties of these games are listed in
Table 11.

Table 11. Details on different line completion games.

Connect6 Dai Hasami Shogi Gomoku Pentalath Squava Yavalath

Board Shape Square Square Square Hexagonal Square Hexagonal
Board Size 19×19 9×9 9×9 5×5 5×5 5×5
Win Line Length 6 5 5 5 4 4
Loss Line Length - - - - 3 3
Max Win Line Length - - 5 - - -
Can Move Pieces? × X × × × ×
Can Capture Pieces? × X × X × ×
Uses Swap Rule? × × × × X X
Moves per Turn 2* 1 1 1 1 1
State Tensor Shape (9, 19, 19) (9, 9, 9) (9, 9, 9) (9, 9, 17) (10, 5, 5) (10, 9, 17)
Policy Tensor Shape (3, 19, 19) (51, 9, 9) (3, 9, 9) (3, 9, 17) (3, 5, 5) (3, 9, 17)
Num. Params DNN 180,472 188,296 180,472 180,472 222,464 222,464

*The first turn in Connect6 consists of only 1 move.

C.4. Ludii Shogi Games

For the evaluation of transfer between different variants of Shogi, we used four games: Hasami Shogi, Kyoto Shogi,
Minishogi, and Shogi. Several properties of these games are listed in Table 12.

Table 12. Details on variants of Shogi.

Hasami Shogi Kyoto Shogi Minishogi Shogi

Board Size 9×9 5×5 5×5 9×9
Num. Piece Types per Player 1 9 10 14
Can Drop Captured Pieces? × X X X
State Tensor Shape (9, 9, 9) (28, 8, 5) (30, 8, 5) (38, 12, 9)
Policy Tensor Shape (51, 9, 9) (51, 8, 5) (51, 8, 5) (51, 12, 9)
Num. Params DNN 188,296 1,752,908 2,009,752 3,212,648

C.5. Broken Line and Diagonal Hex

Broken Line and Diagonal Hex are variations on line completion games, and Hex, respectively, which only take into
consideration diagonal connections for the line completion and connection win conditions. On hexagonal grids, two cells
are considered to be “diagonally connected” if there exists an edge that connects exactly one vertex of each of the cells.
Figure 7 depicts examples of winning game states for the red player in Broken Line on a square board, Broken Line on a
hexagonal board, and Diagonal Hex.

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

(a) A diagonal line of 4 on the square
board is a win for the red player in Broken
Line.

(b) A “diagonal” line of 4 on the hexag-
onal board is a win for the red player in
Broken Line.

(c) A chain of “diagonally” connected
pieces on the hexagonal board is a win
for the red player in Diagonal Hex.

Figure 7. Examples of winning game states for the red player in Broken Line (on a square and hexagonal board), and Diagonal Hex. In
both examples for Broken Line, the target line length was set to 4.

D. Detailed Results – Zero-shot Transfer Between Game Variants
Tables 13-21 provide detailed results for all evaluations of zero-shot transfer between variants within each out of nine
different games.

Table 13. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain (zero-shot transfer). Source and target domains are different boards in Breakthrough.

Game: Breakthrough Target Domain

Source Domain Square6 Square8 Square10 Hexagon4 Hexagon6 Hexagon8

Square6 - 0.00% 7.33% 0.00% 0.00% 0.67%
Square8 10.00% - 77.00% 2.67% 0.00% 1.00%
Square10 1.33% 0.33% - 0.67% 0.00% 0.33%
Hexagon4 0.00% 0.00% 0.00% - 0.33% 1.33%
Hexagon6 0.67% 0.00% 0.00% 12.67% - 39.67%
Hexagon8 0.00% 0.00% 0.00% 4.00% 5.00% -

Table 14. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain (zero-shot transfer). Source and target domains are different boards in Broken Line.

Game: Broken Line Target Domain

Source Domain LineSize3Hex LineSize4Hex LineSize5Square LineSize6Square

LineSize3Hex - 5.67% 0.00% 0.00%
LineSize4Hex 19.33% - 0.00% 0.17%
LineSize5Square 7.00% 0.00% - 49.67%
LineSize6Square 3.67% 0.00% 47.17% -

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

Table 15. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain (zero-shot transfer). Source and target domains are different boards in Diagonal Hex.

Game: Diagonal Hex Target Domain

Source Domain 7×7 9×9 11×11 13×13 19×19

7×7 - 38.00% 22.50% 100.00% 99.67%
9×9 45.17% - 83.00% 100.00% 100.00%
11×11 13.00% 18.00% - 100.00% 100.00%
13×13 0.00% 0.00% 0.00% - 44.83%
19×19 0.00% 0.00% 0.00% 33.83% -

Table 16. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain (zero-shot transfer). Source and target domains are different boards in Gomoku.

Game: Gomoku Target Domain

Source Domain 9×9 13×13 15×15 19×19

9×9 - 44.00% 31.67% 18.67%
13×13 28.17% - 51.33% 62.00%
15×15 25.50% 40.50% - 66.00%
19×19 19.83% 32.67% 35.67% -

Table 17. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain (zero-shot transfer). Source and target domains are different variants of Hex.

Game: Hex Target Domain

Source Domain 7×7 9×9 11×11 13×13 19×19 11×11 Misere

7×7 - 38.33% 14.67% 76.67% 91.67% 0.00%
9×9 21.67% - 56.33% 100.00% 100.00% 0.00%
11×11 20.33% 30.33% - 100.00% 100.00% 0.00%
13×13 4.67% 0.67% 0.00% - 100.00% 0.00%
19×19 0.00% 0.00% 0.00% 0.00% - 0.00%
11×11 Misere 0.00% 0.00% 0.00% 0.00% 0.00% -

Table 18. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain (zero-shot transfer). Source and target domains are different boards in HeXentafl.

Game: HeXentafl Target Domain

Source Domain 4×4 5×5

4×4 - 15.50%
5×5 9.67% -

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

Table 19. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain (zero-shot transfer). Source and target domains are different boards in Konane.

Game: Konane Target Domain

Source Domain 6×6 8×8 10×10 12×12

6×6 - 3.00% 14.67% 63.33%
8×8 31.00% - 94.00% 100.00%
10×10 12.00% 3.33% - 99.67%
12×12 8.00% 0.00% 2.00% -

Table 20. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain (zero-shot transfer). Source and target domains are different boards in Pentalath.

Game: Pentalath Target Domain

Source Domain HexHexBoard HalfHexHexBoard

HexHexBoard - 26.67%
HalfHexHexBoard 18.00% -

Table 21. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain (zero-shot transfer). Source and target domains are different boards in Yavalath.

Game: Yavalath Target Domain

Source Domain 3×3 4×4 5×5 6×6 7×7 8×8

3×3 - 10.83% 4.33% 1.67% 0.67% 0.33%
4×4 29.83% - 29.83% 15.33% 7.67% 4.33%
5×5 10.33% 12.17% - 30.33% 34.00% 25.00%
6×6 8.17% 20.17% 41.17% - 45.33% 58.00%
7×7 8.50% 21.00% 33.00% 38.00% - 53.33%
8×8 7.67% 13.00% 31.00% 29.83% 47.67% -

E. Detailed Results – Transfer Between Game Variants With Fine-tuning
Tables 22-30 provide detailed results for all evaluations of transfer performance after fine-tuning, for transfer between
variants within each out of nine different games. Models are trained for 20 hours on the source domain, followed by 20
hours on the target domain, and evaluated against models trained for 20 hours only on the target domain. Tables 31-39
provide additional results for a similar evaluation where we reinitialised all the parameters of the final convolutional layers
before policy and value heads prior to fine-tuning. The basic idea behind this experiment was that it would lead to a more
random, less biased policy generating experience from self-play at the start of a fine-tuning process, and hence may improve
fine-tuning transfer in cases where full transfer produces a poor initial policy. Overall we did not observe many major
changes in transfer performance.

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

Table 22. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain after fine-tuning. Source and target domains are different boards in Breakthrough.

Game: Breakthrough Target Domain

Source Domain Square6 Square8 Square10 Hexagon4 Hexagon6 Hexagon8

Square6 - 87.33% 99.00% 50.67% 74.00% 51.33%
Square8 50.33% - 92.67% 50.00% 41.00% 55.33%
Square10 52.00% 64.33% - 49.67% 41.67% 58.67%
Hexagon4 56.00% 95.33% 80.00% - 74.67% 56.67%
Hexagon6 51.67% 75.00% 70.33% 50.00% - 74.33%
Hexagon8 52.67% 66.33% 89.00% 49.00% 74.67% -

Table 23. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain after fine-tuning. Source and target domains are different boards in Broken Line.

Game: Broken Line Target Domain

Source Domain LineSize3Hex LineSize4Hex LineSize5Square LineSize6Square

LineSize3Hex - 46.67% 50.00% 50.00%
LineSize4Hex 50.00% - 49.83% 50.00%
LineSize5Square 49.33% 49.50% - 50.00%
LineSize6Square 48.67% 50.83% 49.83% -

Table 24. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain after fine-tuning. Source and target domains are different boards in Diagonal Hex.

Game: Diagonal Hex Target Domain

Source Domain 7×7 9×9 11×11 13×13 19×19

7×7 - 48.83% 84.50% 100.00% 100.00%
9×9 54.33% - 86.00% 100.00% 100.00%
11×11 54.00% 45.50% - 100.00% 100.00%
13×13 55.00% 49.67% 12.83% - 41.00%
19×19 54.17% 48.50% 0.00% 42.50% -

Table 25. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain after fine-tuning. Source and target domains are different boards in Gomoku.

Game: Gomoku Target Domain

Source Domain 9×9 13×13 15×15 19×19

9×9 - 69.50% 70.33% 78.00%
13×13 54.33% - 64.67% 72.67%
15×15 62.17% 50.50% - 67.33%
19×19 55.50% 66.67% 64.50% -

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

Table 26. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain after fine-tuning. Source and target domains are different variants of Hex.

Game: Hex Target Domain

Source Domain 7×7 9×9 11×11 13×13 19×19 11×11 Misere

7×7 - 69.33% 81.33% 100.00% 100.00% 56.67%
9×9 47.67% - 73.00% 100.00% 100.00% 93.67%
11×11 48.33% 71.00% - 100.00% 100.00% 98.33%
13×13 47.67% 27.67% 40.00% - 100.00% 57.33%
19×19 50.00% 48.33% 44.67% 82.33% - 3.33%
11×11 Misere 47.67% 39.00% 45.33% 100.00% 21.67% -

Table 27. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain after fine-tuning. Source and target domains are different boards in HeXentafl.

Game: HeXentafl Target Domain

Source Domain 4×4 5×5

4×4 - 50.50%
5×5 55.83% -

Table 28. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain after fine-tuning. Source and target domains are different boards in Konane.

Game: Konane Target Domain

Source Domain 6×6 8×8 10×10 12×12

6×6 - 52.33% 65.00% 99.67%
8×8 51.00% - 94.67% 98.33%
10×10 49.33% 62.00% - 100.00%
12×12 52.00% 20.67% 56.67% -

Table 29. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain after fine-tuning. Source and target domains are different boards in Pentalath.

Game: Pentalath Target Domain

Source Domain HexHexBoard HalfHexHexBoard

HexHexBoard - 72.67%
HalfHexHexBoard 52.00% -

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

Table 30. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain after fine-tuning. Source and target domains are different boards in Yavalath.

Game: Yavalath Target Domain

Source Domain 3×3 4×4 5×5 6×6 7×7 8×8

3×3 - 39.50% 67.00% 57.33% 57.67% 70.67%
4×4 46.33% - 73.00% 55.17% 60.67% 58.67%
5×5 49.00% 49.50% - 52.00% 63.00% 58.33%
6×6 46.17% 54.83% 69.83% - 65.00% 60.33%
7×7 52.00% 41.17% 68.83% 67.67% - 74.00%
8×8 45.00% 67.50% 66.00% 53.17% 44.67% -

Table 31. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain after fine-tuning with reinitialised final layers. Source and target domains are different boards in
Breakthrough.

Game: Breakthrough Target Domain

Source Domain Square6 Square8 Square10 Hexagon4 Hexagon6 Hexagon8

Square6 - 92.67% 96.33% 48.33% 66.67% 65.33%
Square8 57.00% - 88.33% 49.67% 60.33% 65.33%
Square10 52.33% 53.33% - 49.33% 42.33% 38.00%
Hexagon4 47.67% 77.67% 95.00% - 84.33% 73.00%
Hexagon6 53.00% 86.67% 68.67% 49.67% - 74.00%
Hexagon8 52.33% 66.00% 93.33% 52.00% 74.00% -

Table 32. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain after fine-tuning with reinitialised final layers. Source and target domains are different boards in
Broken Line.

Game: Broken Line Target Domain

Source Domain LineSize3Hex LineSize4Hex LineSize5Square LineSize6Square

LineSize3Hex - 49.00% 50.00% 50.00%
LineSize4Hex 49.00% - 50.00% 49.83%
LineSize5Square 50.00% 50.50% - 50.00%
LineSize6Square 49.67% 49.67% 49.67% -

Table 33. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain after fine-tuning with reinitialised final layers. Source and target domains are different boards in
Diagonal Hex.

Game: Diagonal Hex Target Domain

Source Domain 7×7 9×9 11×11 13×13 19×19

7×7 - 51.00% 86.67% 100.00% 100.00%
9×9 50.33% - 89.67% 100.00% 100.00%
11×11 51.33% 46.83% - 100.00% 100.00%
13×13 54.83% 49.67% 15.00% - 53.00%
19×19 52.83% 49.33% 6.50% 45.17% -

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

Table 34. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain after fine-tuning with reinitialised final layers. Source and target domains are different boards in
Gomoku.

Game: Gomoku Target Domain

Source Domain 9×9 13×13 15×15 19×19

9×9 - 68.00% 65.33% 70.00%
13×13 61.83% - 65.33% 74.00%
15×15 59.33% 58.33% - 71.67%
19×19 55.33% 55.17% 57.17% -

Table 35. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain after fine-tuning with reinitialised final layers. Source and target domains are different variants of Hex.

Game: Hex Target Domain

Source Domain 7×7 9×9 11×11 13×13 19×19 11×11 Misere

7×7 - 68.00% 74.00% 100.00% 100.00% 87.33%
9×9 49.00% - 72.67% 99.67% 100.00% 96.33%
11×11 49.00% 50.33% - 100.00% 100.00% 93.00%
13×13 51.33% 41.33% 40.00% - 100.00% 73.33%
19×19 49.67% 43.00% 36.00% 99.00% - 0.67%
11×11 Misere 47.00% 37.67% 41.00% 100.00% 84.00% -

Table 36. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain after fine-tuning with reinitialised final layers. Source and target domains are different boards in
HeXentafl.

Game: HeXentafl Target Domain

Source Domain 4×4 5×5

4×4 - 52.17%
5×5 43.17% -

Table 37. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain after fine-tuning with reinitialised final layers. Source and target domains are different boards in
Konane.

Game: Konane Target Domain

Source Domain 6×6 8×8 10×10 12×12

6×6 - 54.00% 76.33% 98.33%
8×8 51.67% - 95.67% 99.33%
10×10 50.67% 36.00% - 99.00%
12×12 51.33% 14.67% 38.00% -

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

Table 38. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain after fine-tuning with reinitialised final layers. Source and target domains are different boards in
Pentalath.

Game: Pentalath Target Domain

Source Domain HexHexBoard HalfHexHexBoard

HexHexBoard - 65.67%
HalfHexHexBoard 51.67% -

Table 39. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain after fine-tuning with reinitialised final layers. Source and target domains are different boards in
Yavalath.

Game: Yavalath Target Domain

Source Domain 3×3 4×4 5×5 6×6 7×7 8×8

3×3 - 50.50% 56.17% 65.67% 72.00% 70.67%
4×4 48.33% - 69.00% 68.50% 63.00% 47.33%
5×5 50.33% 51.67% - 44.00% 57.67% 44.33%
6×6 53.17% 60.50% 68.17% - 68.33% 53.67%
7×7 49.33% 54.83% 68.83% 56.67% - 59.00%
8×8 51.17% 43.33% 57.67% 45.83% 68.00% -

F. Detailed Results – Zero-shot Transfer Between Games
Tables 40-43 provide detailed results for zero-shot transfer evaluations, where source domains are different games from
target domains (not just different variants).

Table 40. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain (zero-shot transfer). Source and target domains are different line-completion games.

Target Domain

Source Domain Connect6 Dai Hasami Shogi Gomoku Pentalath Squava Yavalath

Connect6 - 0.00% 2.33% 0.00% 1.00% 0.33%
Dai Hasami Shogi 0.67% - 1.33% 0.00% 0.67% 1.67%
Gomoku 36.67% 0.00% - 0.33% 2.67% 1.33%
Pentalath 11.67% 0.00% 4.33% - 2.00% 1.33%
Squava 16.00% 0.00% 0.33% 0.00% - 2.00%
Yavalath 0.00% 0.00% 0.00% 0.33% 1.67% -

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

Table 41. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain (zero-shot transfer). Source and target domains are different Shogi variants.

Target Domain

Source Domain Hasami Shogi Kyoto Shogi Minishogi Shogi

Hasami Shogi - 1.33% 0.33% 52.67%
Kyoto Shogi 39.83% - 3.00% 44.67%
Minishogi 47.17% 16.17% - 97.00%
Shogi 23.83% 1.67% 0.00% -

Table 42. Win percentage of MCTS with final checkpoint from Broken Line variants against MCTS with final checkpoint trained in target
domain, evaluated in target domain (zero-shot transfer). Target domains are different line completion games.

Target Domain

Source (Broken Line) Connect6 Dai Hasami Shogi Gomoku Pentalath Squava Yavalath

LineSize3Hex 0.00% 0.00% 0.00% 0.00% 0.67% 1.67%
LineSize4Hex 0.00% 0.00% 0.00% 0.00% 0.33% 1.67%
LineSize5Square 31.33% 0.00% 1.00% 0.33% 0.67% 1.33%
LineSize6Square 32.00% 0.00% 1.00% 1.67% 0.33% 2.00%

Table 43. Win percentage of MCTS with final checkpoint from Diagonal Hex variants against MCTS with final checkpoint trained in
target domain, evaluated in target domain (zero-shot transfer). Target domains are different variants of Hex.

Target (Hex)

Source (Diagonal Hex) 7×7 9×9 11×11 11×11 Misere 13×13 19×19

7×7 0.00% 0.00% 0.00% 0.00% 0.00% 10.33%
9×9 0.00% 0.00% 0.00% 0.00% 0.00% 15.67%
11×11 0.00% 0.00% 0.00% 0.00% 0.00% 28.33%
13×13 0.00% 0.00% 0.00% 0.00% 0.00% 9.00%
19×19 0.00% 0.00% 0.00% 0.00% 0.00% 24.33%

G. Detailed Results – Transfer Between Games With Fine-tuning
Tables 44-47 provide detailed results for evaluations of transfer performance after fine-tuning, where source domains are
different games from target domains (not just different variants). Note that in these cases, the two models that play against
each other do not always have exactly the same number of trainable parameters. For hidden convolutional layers, we always
use twice as many channels as the number of channels in a game’s state tensor representation, and this is not modified
when transferring to a new domain. This means that if a source domain has a greater number of channels in its state tensor
representation than the target domain, the transferred model will also still use more channels in its hidden convolutional
layers than the baseline model, and vice versa when the source domain has fewer state channels. Tables 48-51 provide
additional results where we adjust the number of channels of hidden convolutional layers when transferring models, prior to
fine-tuning, for a more “fair” evaluation in terms of network size.

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

Table 44. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain (after fine-tuning). Source and target domains are different line-completion games.

Target Domain

Source Domain Connect6 Dai Hasami Shogi Gomoku Pentalath Squava Yavalath

Connect6 - 54.00% 53.17% 58.33% 45.50% 63.33%
Dai Hasami Shogi 54.67% - 54.50% 53.67% 48.00% 72.33%
Gomoku 95.00% 50.17% - 59.33% 48.50% 49.67%
Pentalath 92.00% 53.33% 57.67% - 46.67% 50.50%
Squava 94.33% 51.00% 56.67% 64.00% - 75.17%
Yavalath 43.00% 53.33% 56.00% 56.00% 45.00% -

Table 45. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain (after fine-tuning). Source and target domains are different Shogi variants.

Target Domain

Source Domain Hasami Shogi Kyoto Shogi Minishogi Shogi

Hasami Shogi - 38.17% 40.17% 89.00%
Kyoto Shogi 45.67% - 35.67% 70.00%
Minishogi 52.00% 63.17% - 86.67%
Shogi 49.67 75.83% 36.00% -

Table 46. Win percentage of MCTS with final checkpoint from Broken Line variants against MCTS with final checkpoint trained in target
domain, evaluated in target domain (after fine-tuning). Target domains are different line completion games.

Target Domain

Source (Broken Line) Connect6 Dai Hasami Shogi Gomoku Pentalath Squava Yavalath

LineSize3Hex 56.00% 52.00% 54.83% 53.67% 49.00% 47.17%
LineSize4Hex 64.67% 52.83% 53.83% 56.33% 48.00% 68.00%
LineSize5Square 88.67% 53.67% 53.83% 66.00% 47.33% 64.00%
LineSize6Square 90.00% 52.33% 50.67% 52.00% 46.00% 58.67%

Table 47. Win percentage of MCTS with final checkpoint from Diagonal Hex variants against MCTS with final checkpoint trained in
target domain, evaluated in target domain (after fine-tuning). Target domains are different variants of Hex.

Target (Hex)

Source (Diagonal Hex) 7×7 9×9 11×11 11×11 Misere 13×13 19×19

7×7 51.00% 59.00% 15.33% 48.67% 99.33% 80.00%
9×9 51.67% 50.33% 19.00% 53.33% 100.00% 70.67%
11×11 46.00% 19.67% 6.33% 23.00% 97.33% 40.67%
13×13 47.00% 56.67% 5.33% 0.67% 0.00% 20.00%
19×19 45.00% 54.67% 28.67% 1.67% 0.00% 45.33%

Transfer of Fully Convolutional Policy-Value Networks Between Games and Game Variants

Table 48. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain (after fine-tuning). Source and target domains are different line-completion games.

Target Domain

Source Domain Connect6 Dai Hasami Shogi Gomoku Pentalath Squava Yavalath

Connect6 - 53.83% 57.50% 69.00% 51.00% 74.00%
Dai Hasami Shogi 55.33% - 57.67% 59.00% 48.67% 68.83%
Gomoku 93.00% 52.00% - 60.33% 46.00% 62.67%
Pentalath 76.67% 48.33% 59.83% - 47.33% 58.33%
Squava 40.67% 50.00% 58.17% 58.67% - 69.50%
Yavalath 70.33% 52.00% 51.67% 53.00% 49.00% -

Table 49. Win percentage of MCTS with final checkpoint from source domain against MCTS with final checkpoint trained in target
domain, evaluated in target domain (after fine-tuning, with number of channels in hidden convolutional layers adjusted to be equal).
Source and target domains are different Shogi variants.

Target Domain

Source Domain Hasami Shogi Kyoto Shogi Minishogi Shogi

Hasami Shogi - 35.83% 34.67% 67.33%
Kyoto Shogi 48.00% - 33.67% 63.33%
Minishogi 50.00% 58.00% - 65.33%
Shogi 49.67% 45.67% 45.67% -

Table 50. Win percentage of MCTS with final checkpoint from Broken Line variants against MCTS with final checkpoint trained in target
domain, evaluated in target domain (after fine-tuning, with number of channels in hidden convolutional layers adjusted to be equal). Target
domains are different line completion games.

Target Domain

Source (Broken Line) Connect6 Dai Hasami Shogi Gomoku Pentalath Squava Yavalath

LineSize3Hex 46.67% 50.00% 48.17% 56.00% 45.67% 74.17%
LineSize4Hex 45.67% 54.33% 52.17% 60.00% 48.33% 66.67%
LineSize5Square 94.00% 49.33% 54.33% 63.00% 48.33% 70.00%
LineSize6Square 82.67% 49.67% 50.17% 47.33% 47.00% 72.00%

Table 51. Win percentage of MCTS with final checkpoint from Diagonal Hex variants against MCTS with final checkpoint trained in
target domain, evaluated in target domain (after fine-tuning, with number of channels in hidden convolutional layers adjusted to be equal).
Target domains are different variants of Hex.

Target (Hex)

Source (Diagonal Hex) 7×7 9×9 11×11 11×11 Misere 13×13 19×19

7×7 50.67% 31.67% 56.33% 8.67% 99.67% 100.00%
9×9 47.00% 48.33% 42.00% 40.00% 98.67% 66.67%
11×11 47.67% 25.67% 42.33% 20.67% 87.00% 12.00%
13×13 49.33% 44.33% 8.33% 1.33% 0.00% 56.67%
19×19 50.00% 50.67% 28.33% 2.00% 0.00% 10.67%

